rtl8188eu/hal/rtl8188e/rtl8188e_phycfg.c

1734 lines
48 KiB
C

/******************************************************************************
*
* Copyright(c) 2007 - 2017 Realtek Corporation.
*
* This program is free software; you can redistribute it and/or modify it
* under the terms of version 2 of the GNU General Public License as
* published by the Free Software Foundation.
*
* This program is distributed in the hope that it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
* more details.
*
*****************************************************************************/
#define _RTL8188E_PHYCFG_C_
#include <drv_types.h>
#include <rtl8188e_hal.h>
/*---------------------------Define Local Constant---------------------------*/
/* Channel switch:The size of command tables for switch channel*/
#define MAX_PRECMD_CNT 16
#define MAX_RFDEPENDCMD_CNT 16
#define MAX_POSTCMD_CNT 16
#define MAX_DOZE_WAITING_TIMES_9x 64
/*---------------------------Define Local Constant---------------------------*/
/*------------------------Define global variable-----------------------------*/
/*------------------------Define local variable------------------------------*/
/*--------------------Define export function prototype-----------------------*/
/* Please refer to header file
*--------------------Define export function prototype-----------------------*/
/*----------------------------Function Body----------------------------------*/
/*
* 1. BB register R/W API
* */
#if (SIC_ENABLE == 1)
static BOOLEAN
sic_IsSICReady(
PADAPTER Adapter
)
{
BOOLEAN bRet = _FALSE;
u32 retryCnt = 0;
u8 sic_cmd = 0xff;
while (1) {
if (retryCnt++ >= SIC_MAX_POLL_CNT) {
/* RTPRINT(FPHY, (PHY_SICR|PHY_SICW), ("[SIC], sic_IsSICReady() return FALSE\n")); */
return _FALSE;
}
/* if(RT_SDIO_CANNOT_IO(Adapter)) */
/* return _FALSE; */
sic_cmd = rtw_read8(Adapter, SIC_CMD_REG);
/* sic_cmd = PlatformEFIORead1Byte(Adapter, SIC_CMD_REG); */
#if (SIC_HW_SUPPORT == 1)
sic_cmd &= 0xf0; /* [7:4] */
#endif
/* RTPRINT(FPHY, (PHY_SICR|PHY_SICW), ("[SIC], sic_IsSICReady(), readback 0x%x=0x%x\n", SIC_CMD_REG, sic_cmd)); */
if (sic_cmd == SIC_CMD_READY)
return _TRUE;
else {
rtw_msleep_os(1);
/* delay_ms(1); */
}
}
return bRet;
}
/*
u32
sic_CalculateBitShift(
u32 BitMask
)
{
u32 i;
for(i=0; i<=31; i++)
{
if ( ((BitMask>>i) & 0x1 ) == 1)
break;
}
return i;
}
*/
static u32
sic_Read4Byte(
void *Adapter,
u32 offset
)
{
u32 u4ret = 0xffffffff;
#if RTL8188E_SUPPORT == 1
u8 retry = 0;
#endif
/* RTPRINT(FPHY, PHY_SICR, ("[SIC], sic_Read4Byte(): read offset(%#x)\n", offset)); */
if (sic_IsSICReady(Adapter)) {
#if (SIC_HW_SUPPORT == 1)
rtw_write8(Adapter, SIC_CMD_REG, SIC_CMD_PREREAD);
/* PlatformEFIOWrite1Byte(Adapter, SIC_CMD_REG, SIC_CMD_PREREAD); */
/* RTPRINT(FPHY, PHY_SICR, ("write cmdreg 0x%x = 0x%x\n", SIC_CMD_REG, SIC_CMD_PREREAD)); */
#endif
rtw_write8(Adapter, SIC_ADDR_REG, (u8)(offset & 0xff));
/* PlatformEFIOWrite1Byte(Adapter, SIC_ADDR_REG, (u8)(offset&0xff)); */
/* RTPRINT(FPHY, PHY_SICR, ("write 0x%x = 0x%x\n", SIC_ADDR_REG, (u8)(offset&0xff))); */
rtw_write8(Adapter, SIC_ADDR_REG + 1, (u8)((offset & 0xff00) >> 8));
/* PlatformEFIOWrite1Byte(Adapter, SIC_ADDR_REG+1, (u8)((offset&0xff00)>>8)); */
/* RTPRINT(FPHY, PHY_SICR, ("write 0x%x = 0x%x\n", SIC_ADDR_REG+1, (u8)((offset&0xff00)>>8))); */
rtw_write8(Adapter, SIC_CMD_REG, SIC_CMD_READ);
/* PlatformEFIOWrite1Byte(Adapter, SIC_CMD_REG, SIC_CMD_READ); */
/* RTPRINT(FPHY, PHY_SICR, ("write cmdreg 0x%x = 0x%x\n", SIC_CMD_REG, SIC_CMD_READ)); */
#if RTL8188E_SUPPORT == 1
retry = 4;
while (retry--) {
rtw_udelay_os(50);
/* PlatformStallExecution(50); */
}
#else
rtw_udelay_os(200);
/* PlatformStallExecution(200); */
#endif
if (sic_IsSICReady(Adapter)) {
u4ret = rtw_read32(Adapter, SIC_DATA_REG);
/* u4ret = PlatformEFIORead4Byte(Adapter, SIC_DATA_REG); */
/* RTPRINT(FPHY, PHY_SICR, ("read 0x%x = 0x%x\n", SIC_DATA_REG, u4ret)); */
/* DbgPrint("<===Read 0x%x = 0x%x\n", offset, u4ret); */
}
}
return u4ret;
}
static void
sic_Write4Byte(
void *Adapter,
u32 offset,
u32 data
)
{
#if RTL8188E_SUPPORT == 1
u8 retry = 6;
#endif
/* DbgPrint("=>Write 0x%x = 0x%x\n", offset, data); */
/* RTPRINT(FPHY, PHY_SICW, ("[SIC], sic_Write4Byte(): write offset(%#x)=0x%x\n", offset, data)); */
if (sic_IsSICReady(Adapter)) {
#if (SIC_HW_SUPPORT == 1)
rtw_write8(Adapter, SIC_CMD_REG, SIC_CMD_PREWRITE);
/* PlatformEFIOWrite1Byte(Adapter, SIC_CMD_REG, SIC_CMD_PREWRITE); */
/* RTPRINT(FPHY, PHY_SICW, ("write data 0x%x = 0x%x\n", SIC_CMD_REG, SIC_CMD_PREWRITE)); */
#endif
rtw_write8(Adapter, SIC_ADDR_REG, (u8)(offset & 0xff));
/* PlatformEFIOWrite1Byte(Adapter, SIC_ADDR_REG, (u8)(offset&0xff)); */
/* RTPRINT(FPHY, PHY_SICW, ("write 0x%x=0x%x\n", SIC_ADDR_REG, (u8)(offset&0xff))); */
rtw_write8(Adapter, SIC_ADDR_REG + 1, (u8)((offset & 0xff00) >> 8));
/* PlatformEFIOWrite1Byte(Adapter, SIC_ADDR_REG+1, (u8)((offset&0xff00)>>8)); */
/* RTPRINT(FPHY, PHY_SICW, ("write 0x%x=0x%x\n", (SIC_ADDR_REG+1), (u8)((offset&0xff00)>>8))); */
rtw_write32(Adapter, SIC_DATA_REG, (u32)data);
/* PlatformEFIOWrite4Byte(Adapter, SIC_DATA_REG, (u32)data); */
/* RTPRINT(FPHY, PHY_SICW, ("write data 0x%x = 0x%x\n", SIC_DATA_REG, data)); */
rtw_write8(Adapter, SIC_CMD_REG, SIC_CMD_WRITE);
/* PlatformEFIOWrite1Byte(Adapter, SIC_CMD_REG, SIC_CMD_WRITE); */
/* RTPRINT(FPHY, PHY_SICW, ("write data 0x%x = 0x%x\n", SIC_CMD_REG, SIC_CMD_WRITE)); */
#if RTL8188E_SUPPORT == 1
while (retry--) {
rtw_udelay_os(50);
/* PlatformStallExecution(50); */
}
#else
rtw_udelay_os(150);
/* PlatformStallExecution(150); */
#endif
}
}
/* ************************************************************
* extern function
* ************************************************************ */
static void
SIC_SetBBReg(
PADAPTER Adapter,
u32 RegAddr,
u32 BitMask,
u32 Data
)
{
HAL_DATA_TYPE *pHalData = GET_HAL_DATA(Adapter);
u32 OriginalValue, BitShift;
u16 BBWaitCounter = 0;
/* RTPRINT(FPHY, PHY_SICW, ("[SIC], SIC_SetBBReg() start\n")); */
#if 0
while (PlatformAtomicExchange(&pHalData->bChangeBBInProgress, _TRUE) == _TRUE) {
BBWaitCounter++;
delay_ms(10); /* 1 ms */
if ((BBWaitCounter > 100) || RT_CANNOT_IO(Adapter)) {
/* Wait too long, return FALSE to avoid to be stuck here. */
RTPRINT(FPHY, PHY_SICW, ("[SIC], SIC_SetBBReg(), Fail to set BB offset(%#x)!!, WaitCnt(%d)\n", RegAddr, BBWaitCounter));
return;
}
}
#endif
/* */
/* Critical section start */
/* */
/* RTPRINT(FPHY, PHY_SICW, ("[SIC], SIC_SetBBReg(), mask=0x%x, addr[0x%x]=0x%x\n", BitMask, RegAddr, Data)); */
if (BitMask != bMaskDWord) { /* if not "double word" write */
OriginalValue = sic_Read4Byte(Adapter, RegAddr);
/* BitShift = sic_CalculateBitShift(BitMask); */
BitShift = PHY_CalculateBitShift(BitMask);
Data = (((OriginalValue)&(~BitMask)) | (Data << BitShift));
}
sic_Write4Byte(Adapter, RegAddr, Data);
/* PlatformAtomicExchange(&pHalData->bChangeBBInProgress, _FALSE); */
/* RTPRINT(FPHY, PHY_SICW, ("[SIC], SIC_SetBBReg() end\n")); */
}
static u32
SIC_QueryBBReg(
PADAPTER Adapter,
u32 RegAddr,
u32 BitMask
)
{
HAL_DATA_TYPE *pHalData = GET_HAL_DATA(Adapter);
u32 ReturnValue = 0, OriginalValue, BitShift;
u16 BBWaitCounter = 0;
/* RTPRINT(FPHY, PHY_SICR, ("[SIC], SIC_QueryBBReg() start\n")); */
#if 0
while (PlatformAtomicExchange(&pHalData->bChangeBBInProgress, _TRUE) == _TRUE) {
BBWaitCounter++;
delay_ms(10); /* 10 ms */
if ((BBWaitCounter > 100) || RT_CANNOT_IO(Adapter)) {
/* Wait too long, return FALSE to avoid to be stuck here. */
RTPRINT(FPHY, PHY_SICW, ("[SIC], SIC_QueryBBReg(), Fail to query BB offset(%#x)!!, WaitCnt(%d)\n", RegAddr, BBWaitCounter));
return ReturnValue;
}
}
#endif
OriginalValue = sic_Read4Byte(Adapter, RegAddr);
/* BitShift = sic_CalculateBitShift(BitMask); */
BitShift = PHY_CalculateBitShift(BitMask);
ReturnValue = (OriginalValue & BitMask) >> BitShift;
/* RTPRINT(FPHY, PHY_SICR, ("[SIC], SIC_QueryBBReg(), 0x%x=0x%x\n", RegAddr, OriginalValue)); */
/* RTPRINT(FPHY, PHY_SICR, ("[SIC], SIC_QueryBBReg() end\n")); */
/* PlatformAtomicExchange(&pHalData->bChangeBBInProgress, _FALSE); */
return ReturnValue;
}
void
SIC_Init(
PADAPTER Adapter
)
{
/* Here we need to write 0x1b8~0x1bf = 0 after fw is downloaded */
/* because for 8723E at beginning 0x1b8=0x1e, that will cause */
/* sic always not be ready */
#if (SIC_HW_SUPPORT == 1)
/* RTPRINT(FPHY, PHY_SICR, ("[SIC], SIC_Init(), write 0x%x = 0x%x\n", */
/* SIC_INIT_REG, SIC_INIT_VAL)); */
rtw_write8(Adapter, SIC_INIT_REG, SIC_INIT_VAL);
/* PlatformEFIOWrite1Byte(Adapter, SIC_INIT_REG, SIC_INIT_VAL); */
/* RTPRINT(FPHY, PHY_SICR, ("[SIC], SIC_Init(), write 0x%x = 0x%x\n", */
/* SIC_CMD_REG, SIC_CMD_INIT)); */
rtw_write8(Adapter, SIC_CMD_REG, SIC_CMD_INIT);
/* PlatformEFIOWrite1Byte(Adapter, SIC_CMD_REG, SIC_CMD_INIT); */
#else
/* RTPRINT(FPHY, PHY_SICR, ("[SIC], SIC_Init(), write 0x1b8~0x1bf = 0x0\n")); */
rtw_write32(Adapter, SIC_CMD_REG, 0);
/* PlatformEFIOWrite4Byte(Adapter, SIC_CMD_REG, 0); */
rtw_write32(Adapter, SIC_CMD_REG + 4, 0);
/* PlatformEFIOWrite4Byte(Adapter, SIC_CMD_REG+4, 0); */
#endif
}
static BOOLEAN
SIC_LedOff(
PADAPTER Adapter
)
{
/* When SIC is enabled, led pin will be used as debug pin, */
/* so don't execute led function when SIC is enabled. */
return _TRUE;
}
#endif
/**
* Function: PHY_QueryBBReg
*
* OverView: Read "sepcific bits" from BB register
*
* Input:
* PADAPTER Adapter,
* u32 RegAddr, //The target address to be readback
* u32 BitMask //The target bit position in the target address
* //to be readback
* Output: None
* Return: u32 Data //The readback register value
* Note: This function is equal to "GetRegSetting" in PHY programming guide
*/
u32
PHY_QueryBBReg8188E(
PADAPTER Adapter,
u32 RegAddr,
u32 BitMask
)
{
u32 ReturnValue = 0, OriginalValue, BitShift;
u16 BBWaitCounter = 0;
#if (DISABLE_BB_RF == 1)
return 0;
#endif
#if (SIC_ENABLE == 1)
return SIC_QueryBBReg(Adapter, RegAddr, BitMask);
#endif
OriginalValue = rtw_read32(Adapter, RegAddr);
BitShift = PHY_CalculateBitShift(BitMask);
ReturnValue = (OriginalValue & BitMask) >> BitShift;
/* RTPRINT(FPHY, PHY_BBR, ("BBR MASK=0x%lx Addr[0x%lx]=0x%lx\n", BitMask, RegAddr, OriginalValue)); */
return ReturnValue;
}
/**
* Function: PHY_SetBBReg
*
* OverView: Write "Specific bits" to BB register (page 8~)
*
* Input:
* PADAPTER Adapter,
* u32 RegAddr, //The target address to be modified
* u32 BitMask //The target bit position in the target address
* //to be modified
* u32 Data //The new register value in the target bit position
* //of the target address
*
* Output: None
* Return: None
* Note: This function is equal to "PutRegSetting" in PHY programming guide
*/
void
PHY_SetBBReg8188E(
PADAPTER Adapter,
u32 RegAddr,
u32 BitMask,
u32 Data
)
{
HAL_DATA_TYPE *pHalData = GET_HAL_DATA(Adapter);
/* u16 BBWaitCounter = 0; */
u32 OriginalValue, BitShift;
#if (DISABLE_BB_RF == 1)
return;
#endif
#if (SIC_ENABLE == 1)
SIC_SetBBReg(Adapter, RegAddr, BitMask, Data);
return;
#endif
if (BitMask != bMaskDWord) { /* if not "double word" write */
OriginalValue = rtw_read32(Adapter, RegAddr);
BitShift = PHY_CalculateBitShift(BitMask);
Data = ((OriginalValue & (~BitMask)) | ((Data << BitShift) & BitMask));
}
rtw_write32(Adapter, RegAddr, Data);
/* RTPRINT(FPHY, PHY_BBW, ("BBW MASK=0x%lx Addr[0x%lx]=0x%lx\n", BitMask, RegAddr, Data)); */
}
/*
* 2. RF register R/W API
*
**
* Function: phy_RFSerialRead
*
* OverView: Read regster from RF chips
*
* Input:
* PADAPTER Adapter,
enum rf_path eRFPath, //Radio path of A/B/C/D
* u32 Offset, //The target address to be read
*
* Output: None
* Return: u32 reback value
* Note: Threre are three types of serial operations:
* 1. Software serial write
* 2. Hardware LSSI-Low Speed Serial Interface
* 3. Hardware HSSI-High speed
* serial write. Driver need to implement (1) and (2).
* This function is equal to the combination of RF_ReadReg() and RFLSSIRead()
*/
static u32
phy_RFSerialRead(
PADAPTER Adapter,
enum rf_path eRFPath,
u32 Offset
)
{
u32 retValue = 0;
HAL_DATA_TYPE *pHalData = GET_HAL_DATA(Adapter);
BB_REGISTER_DEFINITION_T *pPhyReg = &pHalData->PHYRegDef[eRFPath];
u32 NewOffset;
u32 tmplong, tmplong2;
u8 RfPiEnable = 0;
_enter_critical_mutex(&(adapter_to_dvobj(Adapter)->rf_read_reg_mutex) , NULL);
#if 0
if (pHalData->RFChipID == RF_8225 && Offset > 0x24) /* 36 valid regs */
return retValue;
if (pHalData->RFChipID == RF_8256 && Offset > 0x2D) /* 45 valid regs */
return retValue;
#endif
/* */
/* Make sure RF register offset is correct */
/* */
Offset &= 0xff;
/* */
/* Switch page for 8256 RF IC */
/* */
NewOffset = Offset;
/* 2009/06/17 MH We can not execute IO for power save or other accident mode. */
/* if(RT_CANNOT_IO(Adapter)) */
/* { */
/* RTPRINT(FPHY, PHY_RFR, ("phy_RFSerialRead return all one\n")); */
/* return 0xFFFFFFFF; */
/* } */
/* For 92S LSSI Read RFLSSIRead */
/* For RF A/B write 0x824/82c(does not work in the future) */
/* We must use 0x824 for RF A and B to execute read trigger */
tmplong = phy_query_bb_reg(Adapter, rFPGA0_XA_HSSIParameter2, bMaskDWord);
if (eRFPath == RF_PATH_A)
tmplong2 = tmplong;
else
tmplong2 = phy_query_bb_reg(Adapter, pPhyReg->rfHSSIPara2, bMaskDWord);
tmplong2 = (tmplong2 & (~bLSSIReadAddress)) | (NewOffset << 23) | bLSSIReadEdge; /* T65 RF */
phy_set_bb_reg(Adapter, rFPGA0_XA_HSSIParameter2, bMaskDWord, tmplong & (~bLSSIReadEdge));
rtw_udelay_os(10);/* PlatformStallExecution(10); */
phy_set_bb_reg(Adapter, pPhyReg->rfHSSIPara2, bMaskDWord, tmplong2);
rtw_udelay_os(100);/* PlatformStallExecution(100); */
/* phy_set_bb_reg(Adapter, rFPGA0_XA_HSSIParameter2, bMaskDWord, tmplong|bLSSIReadEdge); */
rtw_udelay_os(10);/* PlatformStallExecution(10); */
if (eRFPath == RF_PATH_A)
RfPiEnable = (u8)phy_query_bb_reg(Adapter, rFPGA0_XA_HSSIParameter1, BIT8);
else if (eRFPath == RF_PATH_B)
RfPiEnable = (u8)phy_query_bb_reg(Adapter, rFPGA0_XB_HSSIParameter1, BIT8);
if (RfPiEnable) {
/* Read from BBreg8b8, 12 bits for 8190, 20bits for T65 RF */
retValue = phy_query_bb_reg(Adapter, pPhyReg->rfLSSIReadBackPi, bLSSIReadBackData);
/* RTW_INFO("Readback from RF-PI : 0x%x\n", retValue); */
} else {
/* Read from BBreg8a0, 12 bits for 8190, 20 bits for T65 RF */
retValue = phy_query_bb_reg(Adapter, pPhyReg->rfLSSIReadBack, bLSSIReadBackData);
/* RTW_INFO("Readback from RF-SI : 0x%x\n", retValue); */
}
/* RTW_INFO("RFR-%d Addr[0x%x]=0x%x\n", eRFPath, pPhyReg->rfLSSIReadBack, retValue); */
_exit_critical_mutex(&(adapter_to_dvobj(Adapter)->rf_read_reg_mutex) , NULL);
return retValue;
}
/**
* Function: phy_RFSerialWrite
*
* OverView: Write data to RF register (page 8~)
*
* Input:
* PADAPTER Adapter,
enum rf_path eRFPath, //Radio path of A/B/C/D
* u32 Offset, //The target address to be read
* u32 Data //The new register Data in the target bit position
* //of the target to be read
*
* Output: None
* Return: None
* Note: Threre are three types of serial operations:
* 1. Software serial write
* 2. Hardware LSSI-Low Speed Serial Interface
* 3. Hardware HSSI-High speed
* serial write. Driver need to implement (1) and (2).
* This function is equal to the combination of RF_ReadReg() and RFLSSIRead()
*
* Note: For RF8256 only
* The total count of RTL8256(Zebra4) register is around 36 bit it only employs
* 4-bit RF address. RTL8256 uses "register mode control bit" (Reg00[12], Reg00[10])
* to access register address bigger than 0xf. See "Appendix-4 in PHY Configuration
* programming guide" for more details.
* Thus, we define a sub-finction for RTL8526 register address conversion
* ===========================================================
* Register Mode RegCTL[1] RegCTL[0] Note
* (Reg00[12]) (Reg00[10])
* ===========================================================
* Reg_Mode0 0 x Reg 0 ~15(0x0 ~ 0xf)
* ------------------------------------------------------------------
* Reg_Mode1 1 0 Reg 16 ~30(0x1 ~ 0xf)
* ------------------------------------------------------------------
* Reg_Mode2 1 1 Reg 31 ~ 45(0x1 ~ 0xf)
* ------------------------------------------------------------------
*
* 2008/09/02 MH Add 92S RF definition
*
*
*
*/
static void
phy_RFSerialWrite(
PADAPTER Adapter,
enum rf_path eRFPath,
u32 Offset,
u32 Data
)
{
u32 DataAndAddr = 0;
HAL_DATA_TYPE *pHalData = GET_HAL_DATA(Adapter);
BB_REGISTER_DEFINITION_T *pPhyReg = &pHalData->PHYRegDef[eRFPath];
u32 NewOffset;
#if 0
/* <Roger_TODO> We should check valid regs for RF_6052 case. */
if (pHalData->RFChipID == RF_8225 && Offset > 0x24) /* 36 valid regs */
return;
if (pHalData->RFChipID == RF_8256 && Offset > 0x2D) /* 45 valid regs */
return;
#endif
/* 2009/06/17 MH We can not execute IO for power save or other accident mode. */
/* if(RT_CANNOT_IO(Adapter)) */
/* { */
/* RTPRINT(FPHY, PHY_RFW, ("phy_RFSerialWrite stop\n")); */
/* return; */
/* } */
Offset &= 0xff;
/* */
/* Shadow Update */
/* */
/* PHY_RFShadowWrite(Adapter, eRFPath, Offset, Data); */
/* */
/* Switch page for 8256 RF IC */
/* */
NewOffset = Offset;
/* */
/* Put write addr in [5:0] and write data in [31:16] */
/* */
/* DataAndAddr = (Data<<16) | (NewOffset&0x3f); */
DataAndAddr = ((NewOffset << 20) | (Data & 0x000fffff)) & 0x0fffffff; /* T65 RF */
/* */
/* Write Operation */
/* */
phy_set_bb_reg(Adapter, pPhyReg->rf3wireOffset, bMaskDWord, DataAndAddr);
/* RTPRINT(FPHY, PHY_RFW, ("RFW-%d Addr[0x%lx]=0x%lx\n", eRFPath, pPhyReg->rf3wireOffset, DataAndAddr)); */
}
/**
* Function: PHY_QueryRFReg
*
* OverView: Query "Specific bits" to RF register (page 8~)
*
* Input:
* PADAPTER Adapter,
enum rf_path eRFPath, //Radio path of A/B/C/D
* u32 RegAddr, //The target address to be read
* u32 BitMask //The target bit position in the target address
* //to be read
*
* Output: None
* Return: u32 Readback value
* Note: This function is equal to "GetRFRegSetting" in PHY programming guide
*/
u32
PHY_QueryRFReg8188E(
PADAPTER Adapter,
enum rf_path eRFPath,
u32 RegAddr,
u32 BitMask
)
{
u32 Original_Value, Readback_Value, BitShift;
/* HAL_DATA_TYPE *pHalData = GET_HAL_DATA(Adapter); */
/* u8 RFWaitCounter = 0; */
/* _irqL irqL; */
#if (DISABLE_BB_RF == 1)
return 0;
#endif
#ifdef CONFIG_USB_HCI
/* PlatformAcquireMutex(&pHalData->mxRFOperate); */
#else
/* _enter_critical(&pHalData->rf_lock, &irqL); */
#endif
Original_Value = phy_RFSerialRead(Adapter, eRFPath, RegAddr);
BitShift = PHY_CalculateBitShift(BitMask);
Readback_Value = (Original_Value & BitMask) >> BitShift;
#ifdef CONFIG_USB_HCI
/* PlatformReleaseMutex(&pHalData->mxRFOperate); */
#else
/* _exit_critical(&pHalData->rf_lock, &irqL); */
#endif
/* RTPRINT(FPHY, PHY_RFR, ("RFR-%d MASK=0x%lx Addr[0x%lx]=0x%lx\n", eRFPath, BitMask, RegAddr, Original_Value));//BitMask(%#lx),BitMask, */
return Readback_Value;
}
/**
* Function: PHY_SetRFReg
*
* OverView: Write "Specific bits" to RF register (page 8~)
*
* Input:
* PADAPTER Adapter,
enum rf_path eRFPath, //Radio path of A/B/C/D
* u32 RegAddr, //The target address to be modified
* u32 BitMask //The target bit position in the target address
* //to be modified
* u32 Data //The new register Data in the target bit position
* //of the target address
*
* Output: None
* Return: None
* Note: This function is equal to "PutRFRegSetting" in PHY programming guide
*/
void
PHY_SetRFReg8188E(
PADAPTER Adapter,
enum rf_path eRFPath,
u32 RegAddr,
u32 BitMask,
u32 Data
)
{
/* HAL_DATA_TYPE *pHalData = GET_HAL_DATA(Adapter); */
/* u8 RFWaitCounter = 0; */
u32 Original_Value, BitShift;
/* _irqL irqL; */
#if (DISABLE_BB_RF == 1)
return;
#endif
/* RTPRINT(FINIT, INIT_RF, ("phy_set_rf_reg(): RegAddr(%#lx), BitMask(%#lx), Data(%#lx), eRFPath(%#x)\n", */
/* RegAddr, BitMask, Data, eRFPath)); */
#ifdef CONFIG_USB_HCI
/* PlatformAcquireMutex(&pHalData->mxRFOperate); */
#else
/* _enter_critical(&pHalData->rf_lock, &irqL); */
#endif
/* RF data is 12 bits only */
if (BitMask != bRFRegOffsetMask) {
Original_Value = phy_RFSerialRead(Adapter, eRFPath, RegAddr);
BitShift = PHY_CalculateBitShift(BitMask);
Data = ((Original_Value & (~BitMask)) | (Data << BitShift));
}
phy_RFSerialWrite(Adapter, eRFPath, RegAddr, Data);
#ifdef CONFIG_USB_HCI
/* PlatformReleaseMutex(&pHalData->mxRFOperate); */
#else
/* _exit_critical(&pHalData->rf_lock, &irqL); */
#endif
/* phy_query_rf_reg(Adapter,eRFPath,RegAddr,BitMask); */
}
/*
* 3. Initial MAC/BB/RF config by reading MAC/BB/RF txt.
* */
/*-----------------------------------------------------------------------------
* Function: PHY_MACConfig8192C
*
* Overview: Condig MAC by header file or parameter file.
*
* Input: NONE
*
* Output: NONE
*
* Return: NONE
*
* Revised History:
* When Who Remark
* 08/12/2008 MHC Create Version 0.
*
*---------------------------------------------------------------------------*/
s32 PHY_MACConfig8188E(PADAPTER Adapter)
{
int rtStatus = _SUCCESS;
HAL_DATA_TYPE *pHalData = GET_HAL_DATA(Adapter);
u16 val = 0;
/* */
/* Config MAC */
/* */
#ifdef CONFIG_LOAD_PHY_PARA_FROM_FILE
rtStatus = phy_ConfigMACWithParaFile(Adapter, PHY_FILE_MAC_REG);
if (rtStatus == _FAIL)
#endif
{
#ifdef CONFIG_EMBEDDED_FWIMG
if (HAL_STATUS_FAILURE == odm_config_mac_with_header_file(&pHalData->odmpriv))
rtStatus = _FAIL;
else
rtStatus = _SUCCESS;
#endif/* CONFIG_EMBEDDED_FWIMG */
}
/* 2010.07.13 AMPDU aggregation number B */
val |= MAX_AGGR_NUM;
val = val << 8;
val |= MAX_AGGR_NUM;
rtw_write16(Adapter, REG_MAX_AGGR_NUM, val);
/* rtw_write8(Adapter, REG_MAX_AGGR_NUM, 0x0B); */
return rtStatus;
}
/*-----------------------------------------------------------------------------
* Function: phy_InitBBRFRegisterDefinition
*
* OverView: Initialize Register definition offset for Radio Path A/B/C/D
*
* Input:
* PADAPTER Adapter,
*
* Output: None
* Return: None
* Note: The initialization value is constant and it should never be changes
-----------------------------------------------------------------------------*/
static void
phy_InitBBRFRegisterDefinition(
PADAPTER Adapter
)
{
HAL_DATA_TYPE *pHalData = GET_HAL_DATA(Adapter);
/* RF Interface Sowrtware Control */
pHalData->PHYRegDef[RF_PATH_A].rfintfs = rFPGA0_XAB_RFInterfaceSW; /* 16 LSBs if read 32-bit from 0x870 */
pHalData->PHYRegDef[RF_PATH_B].rfintfs = rFPGA0_XAB_RFInterfaceSW; /* 16 MSBs if read 32-bit from 0x870 (16-bit for 0x872) */
pHalData->PHYRegDef[RF_PATH_C].rfintfs = rFPGA0_XCD_RFInterfaceSW;/* 16 LSBs if read 32-bit from 0x874 */
pHalData->PHYRegDef[RF_PATH_D].rfintfs = rFPGA0_XCD_RFInterfaceSW;/* 16 MSBs if read 32-bit from 0x874 (16-bit for 0x876) */
/* RF Interface Output (and Enable) */
pHalData->PHYRegDef[RF_PATH_A].rfintfo = rFPGA0_XA_RFInterfaceOE; /* 16 LSBs if read 32-bit from 0x860 */
pHalData->PHYRegDef[RF_PATH_B].rfintfo = rFPGA0_XB_RFInterfaceOE; /* 16 LSBs if read 32-bit from 0x864 */
/* RF Interface (Output and) Enable */
pHalData->PHYRegDef[RF_PATH_A].rfintfe = rFPGA0_XA_RFInterfaceOE; /* 16 MSBs if read 32-bit from 0x860 (16-bit for 0x862) */
pHalData->PHYRegDef[RF_PATH_B].rfintfe = rFPGA0_XB_RFInterfaceOE; /* 16 MSBs if read 32-bit from 0x864 (16-bit for 0x866) */
/* Addr of LSSI. Wirte RF register by driver */
pHalData->PHYRegDef[RF_PATH_A].rf3wireOffset = rFPGA0_XA_LSSIParameter; /* LSSI Parameter */
pHalData->PHYRegDef[RF_PATH_B].rf3wireOffset = rFPGA0_XB_LSSIParameter;
/* Tranceiver A~D HSSI Parameter-2 */
pHalData->PHYRegDef[RF_PATH_A].rfHSSIPara2 = rFPGA0_XA_HSSIParameter2; /* wire control parameter2 */
pHalData->PHYRegDef[RF_PATH_B].rfHSSIPara2 = rFPGA0_XB_HSSIParameter2; /* wire control parameter2 */
/* Tranceiver LSSI Readback SI mode */
pHalData->PHYRegDef[RF_PATH_A].rfLSSIReadBack = rFPGA0_XA_LSSIReadBack;
pHalData->PHYRegDef[RF_PATH_B].rfLSSIReadBack = rFPGA0_XB_LSSIReadBack;
pHalData->PHYRegDef[RF_PATH_C].rfLSSIReadBack = rFPGA0_XC_LSSIReadBack;
pHalData->PHYRegDef[RF_PATH_D].rfLSSIReadBack = rFPGA0_XD_LSSIReadBack;
/* Tranceiver LSSI Readback PI mode */
pHalData->PHYRegDef[RF_PATH_A].rfLSSIReadBackPi = TransceiverA_HSPI_Readback;
pHalData->PHYRegDef[RF_PATH_B].rfLSSIReadBackPi = TransceiverB_HSPI_Readback;
/* pHalData->PHYRegDef[RF_PATH_C].rfLSSIReadBackPi = rFPGA0_XC_LSSIReadBack; */
/* pHalData->PHYRegDef[RF_PATH_D].rfLSSIReadBackPi = rFPGA0_XD_LSSIReadBack; */
}
static int
phy_BB8188E_Config_ParaFile(
PADAPTER Adapter
)
{
HAL_DATA_TYPE *pHalData = GET_HAL_DATA(Adapter);
int rtStatus = _SUCCESS;
/* */
/* 1. Read PHY_REG.TXT BB INIT!! */
/* */
#ifdef CONFIG_LOAD_PHY_PARA_FROM_FILE
if (phy_ConfigBBWithParaFile(Adapter, PHY_FILE_PHY_REG, CONFIG_BB_PHY_REG) == _FAIL)
#endif
{
#ifdef CONFIG_EMBEDDED_FWIMG
if (HAL_STATUS_FAILURE == odm_config_bb_with_header_file(&pHalData->odmpriv, CONFIG_BB_PHY_REG))
rtStatus = _FAIL;
#endif
}
if (rtStatus != _SUCCESS) {
goto phy_BB8190_Config_ParaFile_Fail;
}
#if (MP_DRIVER == 1)
/* */
/* 1.1 Read PHY_REG_MP.TXT BB INIT!! */
/* */
if (Adapter->registrypriv.mp_mode == 1) {
/* 3 Read PHY_REG.TXT BB INIT!! */
#ifdef CONFIG_LOAD_PHY_PARA_FROM_FILE
if (phy_ConfigBBWithMpParaFile(Adapter, PHY_FILE_PHY_REG_MP) == _FAIL)
#endif
{
#ifdef CONFIG_EMBEDDED_FWIMG
if (HAL_STATUS_SUCCESS != odm_config_bb_with_header_file(&pHalData->odmpriv, CONFIG_BB_PHY_REG_MP))
rtStatus = _FAIL;
#endif
}
if (rtStatus != _SUCCESS) {
RTW_INFO("phy_BB8188E_Config_ParaFile():Write BB Reg MP Fail!!");
goto phy_BB8190_Config_ParaFile_Fail;
}
}
#endif /* #if (MP_DRIVER == 1) */
/* */
/* 3. BB AGC table Initialization */
/* */
#ifdef CONFIG_LOAD_PHY_PARA_FROM_FILE
if (phy_ConfigBBWithParaFile(Adapter, PHY_FILE_AGC_TAB, CONFIG_BB_AGC_TAB) == _FAIL)
#endif
{
#ifdef CONFIG_EMBEDDED_FWIMG
if (HAL_STATUS_FAILURE == odm_config_bb_with_header_file(&pHalData->odmpriv, CONFIG_BB_AGC_TAB))
rtStatus = _FAIL;
#endif
}
if (rtStatus != _SUCCESS) {
goto phy_BB8190_Config_ParaFile_Fail;
}
phy_BB8190_Config_ParaFile_Fail:
return rtStatus;
}
int
PHY_BBConfig8188E(
PADAPTER Adapter
)
{
int rtStatus = _SUCCESS;
HAL_DATA_TYPE *pHalData = GET_HAL_DATA(Adapter);
u32 RegVal;
u8 TmpU1B = 0;
u8 value8;
phy_InitBBRFRegisterDefinition(Adapter);
/* Enable BB and RF */
RegVal = rtw_read16(Adapter, REG_SYS_FUNC_EN);
rtw_write16(Adapter, REG_SYS_FUNC_EN, (u16)(RegVal | BIT13 | BIT0 | BIT1));
/* 20090923 Joseph: Advised by Steven and Jenyu. Power sequence before init RF. */
/* rtw_write8(Adapter, REG_AFE_PLL_CTRL, 0x83); */
/* rtw_write8(Adapter, REG_AFE_PLL_CTRL+1, 0xdb); */
rtw_write8(Adapter, REG_RF_CTRL, RF_EN | RF_RSTB | RF_SDMRSTB);
#ifdef CONFIG_USB_HCI
rtw_write8(Adapter, REG_SYS_FUNC_EN, FEN_USBA | FEN_USBD | FEN_BB_GLB_RSTn | FEN_BBRSTB);
#elif defined CONFIG_PCI_HCI
rtw_write8(Adapter, REG_SYS_FUNC_EN, FEN_PPLL | FEN_PCIEA | FEN_DIO_PCIE | FEN_BB_GLB_RSTn | FEN_BBRSTB);
#endif
#if 0
#ifdef CONFIG_USB_HCI
/* To Fix MAC loopback mode fail. Suggested by SD4 Johnny. 2010.03.23. */
rtw_write8(Adapter, REG_LDOHCI12_CTRL, 0x0f);
rtw_write8(Adapter, 0x15, 0xe9);
#endif
rtw_write8(Adapter, REG_AFE_XTAL_CTRL + 1, 0x80);
#endif
#ifdef CONFIG_USB_HCI
/* rtw_write8(Adapter, 0x15, 0xe9); */
#endif
#ifdef CONFIG_PCI_HCI
#ifdef CONFIG_RTW_LED
/* Force use left antenna by default for 88C. */
if (adapter_to_led(Adapter)->LedStrategy != SW_LED_MODE10) {
RegVal = rtw_read32(Adapter, REG_LEDCFG0);
rtw_write32(Adapter, REG_LEDCFG0, RegVal | BIT23);
}
#endif
#endif
/* */
/* Config BB and AGC */
/* */
rtStatus = phy_BB8188E_Config_ParaFile(Adapter);
if (rtw_phydm_set_crystal_cap(Adapter, pHalData->crystal_cap) == _FALSE) {
RTW_ERR("Init crystal_cap failed\n");
rtw_warn_on(1);
rtStatus = _FAIL;
}
return rtStatus;
}
int
PHY_RFConfig8188E(
PADAPTER Adapter
)
{
int rtStatus = _SUCCESS;
/* */
/* RF config */
/* */
rtStatus = PHY_RF6052_Config8188E(Adapter);
return rtStatus;
}
/*-----------------------------------------------------------------------------
* Function: PHY_ConfigRFWithParaFile()
*
* Overview: This function read RF parameters from general file format, and do RF 3-wire
*
* Input: PADAPTER Adapter
* ps1Byte pFileName
* u8 eRFPath
*
* Output: NONE
*
* Return: RT_STATUS_SUCCESS: configuration file exist
*
* Note: Delay may be required for RF configuration
*---------------------------------------------------------------------------*/
int
rtl8188e_PHY_ConfigRFWithParaFile(
PADAPTER Adapter,
u8 *pFileName,
enum rf_path eRFPath
)
{
HAL_DATA_TYPE *pHalData = GET_HAL_DATA(Adapter);
int rtStatus = _SUCCESS;
return rtStatus;
}
/* ****************************************
* The following is for High Power PA
* **************************************** */
#define HighPowerRadioAArrayLen 22
/* This is for High power PA */
u32 Rtl8192S_HighPower_RadioA_Array[HighPowerRadioAArrayLen] = {
0x013, 0x00029ea4,
0x013, 0x00025e74,
0x013, 0x00020ea4,
0x013, 0x0001ced0,
0x013, 0x00019f40,
0x013, 0x00014e70,
0x013, 0x000106a0,
0x013, 0x0000c670,
0x013, 0x000082a0,
0x013, 0x00004270,
0x013, 0x00000240,
};
/*-----------------------------------------------------------------------------
* Function: SetTxPowerLevel8190()
*
* Overview: This function is export to "HalCommon" moudule
* We must consider RF path later!!!!!!!
*
* Input: PADAPTER Adapter
* u8 channel
*
* Output: NONE
*
* Return: NONE
* 2008/11/04 MHC We remove EEPROM_93C56.
* We need to move CCX relative code to independet file.
* 2009/01/21 MHC Support new EEPROM format from SD3 requirement.
*
*---------------------------------------------------------------------------*/
void
PHY_SetTxPowerLevel8188E(
PADAPTER Adapter,
u8 Channel
)
{
phy_set_tx_power_level_by_path(Adapter, Channel, RF_PATH_A);
}
void
PHY_SetTxPowerIndex_8188E(
PADAPTER Adapter,
u32 PowerIndex,
enum rf_path RFPath,
u8 Rate
)
{
if (RFPath == RF_PATH_A) {
switch (Rate) {
case MGN_1M:
phy_set_bb_reg(Adapter, rTxAGC_A_CCK1_Mcs32, bMaskByte1, PowerIndex);
break;
case MGN_2M:
phy_set_bb_reg(Adapter, rTxAGC_B_CCK11_A_CCK2_11, bMaskByte1, PowerIndex);
break;
case MGN_5_5M:
phy_set_bb_reg(Adapter, rTxAGC_B_CCK11_A_CCK2_11, bMaskByte2, PowerIndex);
break;
case MGN_11M:
phy_set_bb_reg(Adapter, rTxAGC_B_CCK11_A_CCK2_11, bMaskByte3, PowerIndex);
break;
case MGN_6M:
phy_set_bb_reg(Adapter, rTxAGC_A_Rate18_06, bMaskByte0, PowerIndex);
break;
case MGN_9M:
phy_set_bb_reg(Adapter, rTxAGC_A_Rate18_06, bMaskByte1, PowerIndex);
break;
case MGN_12M:
phy_set_bb_reg(Adapter, rTxAGC_A_Rate18_06, bMaskByte2, PowerIndex);
break;
case MGN_18M:
phy_set_bb_reg(Adapter, rTxAGC_A_Rate18_06, bMaskByte3, PowerIndex);
break;
case MGN_24M:
phy_set_bb_reg(Adapter, rTxAGC_A_Rate54_24, bMaskByte0, PowerIndex);
break;
case MGN_36M:
phy_set_bb_reg(Adapter, rTxAGC_A_Rate54_24, bMaskByte1, PowerIndex);
break;
case MGN_48M:
phy_set_bb_reg(Adapter, rTxAGC_A_Rate54_24, bMaskByte2, PowerIndex);
break;
case MGN_54M:
phy_set_bb_reg(Adapter, rTxAGC_A_Rate54_24, bMaskByte3, PowerIndex);
break;
case MGN_MCS0:
phy_set_bb_reg(Adapter, rTxAGC_A_Mcs03_Mcs00, bMaskByte0, PowerIndex);
break;
case MGN_MCS1:
phy_set_bb_reg(Adapter, rTxAGC_A_Mcs03_Mcs00, bMaskByte1, PowerIndex);
break;
case MGN_MCS2:
phy_set_bb_reg(Adapter, rTxAGC_A_Mcs03_Mcs00, bMaskByte2, PowerIndex);
break;
case MGN_MCS3:
phy_set_bb_reg(Adapter, rTxAGC_A_Mcs03_Mcs00, bMaskByte3, PowerIndex);
break;
case MGN_MCS4:
phy_set_bb_reg(Adapter, rTxAGC_A_Mcs07_Mcs04, bMaskByte0, PowerIndex);
break;
case MGN_MCS5:
phy_set_bb_reg(Adapter, rTxAGC_A_Mcs07_Mcs04, bMaskByte1, PowerIndex);
break;
case MGN_MCS6:
phy_set_bb_reg(Adapter, rTxAGC_A_Mcs07_Mcs04, bMaskByte2, PowerIndex);
break;
case MGN_MCS7:
phy_set_bb_reg(Adapter, rTxAGC_A_Mcs07_Mcs04, bMaskByte3, PowerIndex);
break;
case MGN_MCS8:
phy_set_bb_reg(Adapter, rTxAGC_A_Mcs11_Mcs08, bMaskByte0, PowerIndex);
break;
case MGN_MCS9:
phy_set_bb_reg(Adapter, rTxAGC_A_Mcs11_Mcs08, bMaskByte1, PowerIndex);
break;
case MGN_MCS10:
phy_set_bb_reg(Adapter, rTxAGC_A_Mcs11_Mcs08, bMaskByte2, PowerIndex);
break;
case MGN_MCS11:
phy_set_bb_reg(Adapter, rTxAGC_A_Mcs11_Mcs08, bMaskByte3, PowerIndex);
break;
case MGN_MCS12:
phy_set_bb_reg(Adapter, rTxAGC_A_Mcs15_Mcs12, bMaskByte0, PowerIndex);
break;
case MGN_MCS13:
phy_set_bb_reg(Adapter, rTxAGC_A_Mcs15_Mcs12, bMaskByte1, PowerIndex);
break;
case MGN_MCS14:
phy_set_bb_reg(Adapter, rTxAGC_A_Mcs15_Mcs12, bMaskByte2, PowerIndex);
break;
case MGN_MCS15:
phy_set_bb_reg(Adapter, rTxAGC_A_Mcs15_Mcs12, bMaskByte3, PowerIndex);
break;
default:
RTW_INFO("Invalid Rate!!\n");
break;
}
} else if (RFPath == RF_PATH_B) {
switch (Rate) {
case MGN_1M:
phy_set_bb_reg(Adapter, rTxAGC_B_CCK1_55_Mcs32, bMaskByte1, PowerIndex);
break;
case MGN_2M:
phy_set_bb_reg(Adapter, rTxAGC_B_CCK1_55_Mcs32, bMaskByte2, PowerIndex);
break;
case MGN_5_5M:
phy_set_bb_reg(Adapter, rTxAGC_B_CCK1_55_Mcs32, bMaskByte3, PowerIndex);
break;
case MGN_11M:
phy_set_bb_reg(Adapter, rTxAGC_B_CCK11_A_CCK2_11, bMaskByte0, PowerIndex);
break;
case MGN_6M:
phy_set_bb_reg(Adapter, rTxAGC_B_Rate18_06, bMaskByte0, PowerIndex);
break;
case MGN_9M:
phy_set_bb_reg(Adapter, rTxAGC_B_Rate18_06, bMaskByte1, PowerIndex);
break;
case MGN_12M:
phy_set_bb_reg(Adapter, rTxAGC_B_Rate18_06, bMaskByte2, PowerIndex);
break;
case MGN_18M:
phy_set_bb_reg(Adapter, rTxAGC_B_Rate18_06, bMaskByte3, PowerIndex);
break;
case MGN_24M:
phy_set_bb_reg(Adapter, rTxAGC_B_Rate54_24, bMaskByte0, PowerIndex);
break;
case MGN_36M:
phy_set_bb_reg(Adapter, rTxAGC_B_Rate54_24, bMaskByte1, PowerIndex);
break;
case MGN_48M:
phy_set_bb_reg(Adapter, rTxAGC_B_Rate54_24, bMaskByte2, PowerIndex);
break;
case MGN_54M:
phy_set_bb_reg(Adapter, rTxAGC_B_Rate54_24, bMaskByte3, PowerIndex);
break;
case MGN_MCS0:
phy_set_bb_reg(Adapter, rTxAGC_B_Mcs03_Mcs00, bMaskByte0, PowerIndex);
break;
case MGN_MCS1:
phy_set_bb_reg(Adapter, rTxAGC_B_Mcs03_Mcs00, bMaskByte1, PowerIndex);
break;
case MGN_MCS2:
phy_set_bb_reg(Adapter, rTxAGC_B_Mcs03_Mcs00, bMaskByte2, PowerIndex);
break;
case MGN_MCS3:
phy_set_bb_reg(Adapter, rTxAGC_B_Mcs03_Mcs00, bMaskByte3, PowerIndex);
break;
case MGN_MCS4:
phy_set_bb_reg(Adapter, rTxAGC_B_Mcs07_Mcs04, bMaskByte0, PowerIndex);
break;
case MGN_MCS5:
phy_set_bb_reg(Adapter, rTxAGC_B_Mcs07_Mcs04, bMaskByte1, PowerIndex);
break;
case MGN_MCS6:
phy_set_bb_reg(Adapter, rTxAGC_B_Mcs07_Mcs04, bMaskByte2, PowerIndex);
break;
case MGN_MCS7:
phy_set_bb_reg(Adapter, rTxAGC_B_Mcs07_Mcs04, bMaskByte3, PowerIndex);
break;
case MGN_MCS8:
phy_set_bb_reg(Adapter, rTxAGC_B_Mcs11_Mcs08, bMaskByte0, PowerIndex);
break;
case MGN_MCS9:
phy_set_bb_reg(Adapter, rTxAGC_B_Mcs11_Mcs08, bMaskByte1, PowerIndex);
break;
case MGN_MCS10:
phy_set_bb_reg(Adapter, rTxAGC_B_Mcs11_Mcs08, bMaskByte2, PowerIndex);
break;
case MGN_MCS11:
phy_set_bb_reg(Adapter, rTxAGC_B_Mcs11_Mcs08, bMaskByte3, PowerIndex);
break;
case MGN_MCS12:
phy_set_bb_reg(Adapter, rTxAGC_B_Mcs15_Mcs12, bMaskByte0, PowerIndex);
break;
case MGN_MCS13:
phy_set_bb_reg(Adapter, rTxAGC_B_Mcs15_Mcs12, bMaskByte1, PowerIndex);
break;
case MGN_MCS14:
phy_set_bb_reg(Adapter, rTxAGC_B_Mcs15_Mcs12, bMaskByte2, PowerIndex);
break;
case MGN_MCS15:
phy_set_bb_reg(Adapter, rTxAGC_B_Mcs15_Mcs12, bMaskByte3, PowerIndex);
break;
default:
RTW_INFO("Invalid Rate!!\n");
break;
}
} else
RTW_INFO("Invalid RFPath!!\n");
}
s8 phy_get_txpwr_target_extra_bias_8188e(_adapter *adapter, enum rf_path rfpath
, RATE_SECTION rs, enum MGN_RATE rate, enum channel_width bw, BAND_TYPE band, u8 cch)
{
s8 bias = 0;
if (adapter->registrypriv.mp_mode)
goto exit;
if (rate == MGN_2M)
bias = -9;
exit:
return bias;
}
void
PHY_ScanOperationBackup8188E(
PADAPTER Adapter,
u8 Operation
)
{
#if 0
IO_TYPE IoType;
if (!rtw_is_drv_stopped(padapter)) {
switch (Operation) {
case SCAN_OPT_BACKUP:
IoType = IO_CMD_PAUSE_DM_BY_SCAN;
rtw_hal_set_hwreg(Adapter, HW_VAR_IO_CMD, (u8 *)&IoType);
break;
case SCAN_OPT_RESTORE:
IoType = IO_CMD_RESUME_DM_BY_SCAN;
rtw_hal_set_hwreg(Adapter, HW_VAR_IO_CMD, (u8 *)&IoType);
break;
default:
break;
}
}
#endif
}
void
phy_SpurCalibration_8188E(
PADAPTER Adapter
)
{
HAL_DATA_TYPE *pHalData = GET_HAL_DATA(Adapter);
struct dm_struct *p_dm_odm = &(pHalData->odmpriv);
/* DbgPrint("===> phy_SpurCalibration_8188E current_channel_bw = %d, current_channel = %d\n", pHalData->current_channel_bw, pHalData->current_channel);*/
if (pHalData->current_channel_bw == CHANNEL_WIDTH_20 && (pHalData->current_channel == 13 || pHalData->current_channel == 14)) {
phy_set_bb_reg(Adapter, rOFDM0_RxDSP, BIT(9), 0x1);/* enable notch filter */
phy_set_bb_reg(Adapter, rOFDM1_IntfDet, BIT(8) | BIT(7) | BIT(6), 0x2); /* intf_TH */
phy_set_bb_reg(Adapter, rOFDM0_RxDSP, BIT(28) | BIT(27) | BIT(26) | BIT(25) | BIT(24), 0x1f);
p_dm_odm->is_rx_blocking_en = false;
} else if (pHalData->current_channel_bw == CHANNEL_WIDTH_40 && pHalData->current_channel == 11) {
phy_set_bb_reg(Adapter, rOFDM0_RxDSP, BIT(9), 0x1);/* enable notch filter */
phy_set_bb_reg(Adapter, rOFDM1_IntfDet, BIT(8) | BIT(7) | BIT(6), 0x2); /* intf_TH */
phy_set_bb_reg(Adapter, rOFDM0_RxDSP, BIT(28) | BIT(27) | BIT(26) | BIT(25) | BIT(24), 0x1f);
p_dm_odm->is_rx_blocking_en = false;
} else {
if (Adapter->registrypriv.notch_filter == 0)
phy_set_bb_reg(Adapter, rOFDM0_RxDSP, BIT(9), 0x0);/* disable notch filter */
}
}
/*-----------------------------------------------------------------------------
* Function: PHY_SetBWModeCallback8192C()
*
* Overview: Timer callback function for SetSetBWMode
*
* Input: PRT_TIMER pTimer
*
* Output: NONE
*
* Return: NONE
*
* Note: (1) We do not take j mode into consideration now
* (2) Will two workitem of "switch channel" and "switch channel bandwidth" run
* concurrently?
*---------------------------------------------------------------------------*/
static void
_PHY_SetBWMode88E(
PADAPTER Adapter
)
{
/* PADAPTER Adapter = (PADAPTER)pTimer->Adapter; */
HAL_DATA_TYPE *pHalData = GET_HAL_DATA(Adapter);
u8 regBwOpMode;
u8 regRRSR_RSC;
/* return; */
/* Added it for 20/40 mhz switch time evaluation by guangan 070531 */
/* u32 NowL, NowH; */
/* u64 BeginTime, EndTime; */
if (pHalData->rf_chip == RF_PSEUDO_11N) {
/* pHalData->SetBWModeInProgress= _FALSE; */
return;
}
/* There is no 40MHz mode in RF_8225. */
if (pHalData->rf_chip == RF_8225)
return;
if (rtw_is_drv_stopped(Adapter))
return;
/* Added it for 20/40 mhz switch time evaluation by guangan 070531 */
/* NowL = PlatformEFIORead4Byte(Adapter, TSFR); */
/* NowH = PlatformEFIORead4Byte(Adapter, TSFR+4); */
/* BeginTime = ((u64)NowH << 32) + NowL; */
/* 3 */
/* 3 */ /* <1>Set MAC register */
/* 3 */
/* Adapter->hal_func.SetBWModeHandler(); */
regBwOpMode = rtw_read8(Adapter, REG_BWOPMODE);
regRRSR_RSC = rtw_read8(Adapter, REG_RRSR + 2);
/* regBwOpMode = rtw_hal_get_hwreg(Adapter,HW_VAR_BWMODE,(u8 *)&regBwOpMode); */
switch (pHalData->current_channel_bw) {
case CHANNEL_WIDTH_20:
regBwOpMode |= BW_OPMODE_20MHZ;
/* 2007/02/07 Mark by Emily becasue we have not verify whether this register works */
rtw_write8(Adapter, REG_BWOPMODE, regBwOpMode);
break;
case CHANNEL_WIDTH_40:
regBwOpMode &= ~BW_OPMODE_20MHZ;
/* 2007/02/07 Mark by Emily becasue we have not verify whether this register works */
rtw_write8(Adapter, REG_BWOPMODE, regBwOpMode);
regRRSR_RSC = (regRRSR_RSC & 0x90) | (pHalData->nCur40MhzPrimeSC << 5);
rtw_write8(Adapter, REG_RRSR + 2, regRRSR_RSC);
break;
default:
break;
}
/* 3 */
/* 3 */ /* <2>Set PHY related register */
/* 3 */
switch (pHalData->current_channel_bw) {
/* 20 MHz channel*/
case CHANNEL_WIDTH_20:
phy_set_bb_reg(Adapter, rFPGA0_RFMOD, bRFMOD, 0x0);
phy_set_bb_reg(Adapter, rFPGA1_RFMOD, bRFMOD, 0x0);
/* phy_set_bb_reg(Adapter, rFPGA0_AnalogParameter2, BIT10, 1); */
break;
/* 40 MHz channel*/
case CHANNEL_WIDTH_40:
phy_set_bb_reg(Adapter, rFPGA0_RFMOD, bRFMOD, 0x1);
phy_set_bb_reg(Adapter, rFPGA1_RFMOD, bRFMOD, 0x1);
/* Set Control channel to upper or lower. These settings are required only for 40MHz */
phy_set_bb_reg(Adapter, rCCK0_System, bCCKSideBand, (pHalData->nCur40MhzPrimeSC >> 1));
phy_set_bb_reg(Adapter, rOFDM1_LSTF, 0xC00, pHalData->nCur40MhzPrimeSC);
/* phy_set_bb_reg(Adapter, rFPGA0_AnalogParameter2, BIT10, 0); */
phy_set_bb_reg(Adapter, 0x818, (BIT26 | BIT27), (pHalData->nCur40MhzPrimeSC == HAL_PRIME_CHNL_OFFSET_LOWER) ? 2 : 1);
break;
default:
break;
}
/* Skip over setting of J-mode in BB register here. Default value is "None J mode". Emily 20070315 */
/* Added it for 20/40 mhz switch time evaluation by guangan 070531 */
/* NowL = PlatformEFIORead4Byte(Adapter, TSFR); */
/* NowH = PlatformEFIORead4Byte(Adapter, TSFR+4); */
/* EndTime = ((u64)NowH << 32) + NowL; */
/* 3<3>Set RF related register */
switch (pHalData->rf_chip) {
case RF_8225:
/* PHY_SetRF8225Bandwidth(Adapter, pHalData->current_channel_bw); */
break;
case RF_8256:
/* Please implement this function in Hal8190PciPhy8256.c */
/* PHY_SetRF8256Bandwidth(Adapter, pHalData->current_channel_bw); */
break;
case RF_8258:
/* Please implement this function in Hal8190PciPhy8258.c */
/* PHY_SetRF8258Bandwidth(); */
break;
case RF_PSEUDO_11N:
/* Do Nothing */
break;
case RF_6052:
rtl8188e_PHY_RF6052SetBandwidth(Adapter, pHalData->current_channel_bw);
break;
default:
/* RT_ASSERT(FALSE, ("Unknown RFChipID: %d\n", pHalData->RFChipID)); */
break;
}
/* pHalData->SetBWModeInProgress= FALSE; */
}
#if 0
/* -----------------------------------------------------------------------------
* * Function: SetBWMode8190Pci()
* *
* * Overview: This function is export to "HalCommon" moudule
* *
* * Input: PADAPTER Adapter
* * CHANNEL_WIDTH Bandwidth 20M or 40M
* *
* * Output: NONE
* *
* * Return: NONE
* *
* * Note: We do not take j mode into consideration now
* *--------------------------------------------------------------------------- */
#endif
void
PHY_SetBWMode8188E(
PADAPTER Adapter,
enum channel_width Bandwidth, /* 20M or 40M */
unsigned char Offset /* Upper, Lower, or Don't care */
)
{
HAL_DATA_TYPE *pHalData = GET_HAL_DATA(Adapter);
enum channel_width tmpBW = pHalData->current_channel_bw;
/* Modified it for 20/40 mhz switch by guangan 070531 */
/* PMGNT_INFO pMgntInfo=&Adapter->MgntInfo; */
/* return; */
/* if(pHalData->SwChnlInProgress)
* if(pMgntInfo->bScanInProgress)
* {
* return;
* } */
/* if(pHalData->SetBWModeInProgress)
* {
* */ /* Modified it for 20/40 mhz switch by guangan 070531
* PlatformCancelTimer(Adapter, &pHalData->SetBWModeTimer);
* */ /* return;
* } */
/* if(pHalData->SetBWModeInProgress) */
/* return; */
/* pHalData->SetBWModeInProgress= TRUE; */
pHalData->current_channel_bw = Bandwidth;
#if 0
if (Offset == EXTCHNL_OFFSET_LOWER)
pHalData->nCur40MhzPrimeSC = HAL_PRIME_CHNL_OFFSET_UPPER;
else if (Offset == EXTCHNL_OFFSET_UPPER)
pHalData->nCur40MhzPrimeSC = HAL_PRIME_CHNL_OFFSET_LOWER;
else
pHalData->nCur40MhzPrimeSC = HAL_PRIME_CHNL_OFFSET_DONT_CARE;
#else
pHalData->nCur40MhzPrimeSC = Offset;
#endif
if (!RTW_CANNOT_RUN(Adapter)) {
#if 0
/* PlatformSetTimer(Adapter, &(pHalData->SetBWModeTimer), 0); */
#else
_PHY_SetBWMode88E(Adapter);
#endif
#if defined(CONFIG_USB_HCI) || defined(CONFIG_SDIO_HCI)
if (IS_VENDOR_8188E_I_CUT_SERIES(Adapter))
phy_SpurCalibration_8188E(Adapter);
#endif
} else {
/* pHalData->SetBWModeInProgress= FALSE; */
pHalData->current_channel_bw = tmpBW;
}
}
static void _PHY_SwChnl8188E(PADAPTER Adapter, u8 channel)
{
enum rf_path eRFPath;
u32 param1, param2;
HAL_DATA_TYPE *pHalData = GET_HAL_DATA(Adapter);
struct hal_spec_t *hal_spec = GET_HAL_SPEC(Adapter);
if (Adapter->bNotifyChannelChange)
RTW_INFO("[%s] ch = %d\n", __FUNCTION__, channel);
/* s2. RF dependent command - CmdID_RF_WriteReg, param1=RF_CHNLBW, param2=channel */
param1 = RF_CHNLBW;
param2 = channel;
for (eRFPath = RF_PATH_A; eRFPath < hal_spec->rf_reg_path_num; eRFPath++) {
pHalData->RfRegChnlVal[eRFPath] = ((pHalData->RfRegChnlVal[eRFPath] & 0xfffffc00) | param2);
phy_set_rf_reg(Adapter, eRFPath, param1, bRFRegOffsetMask, pHalData->RfRegChnlVal[eRFPath]);
}
/* s3. post common command - CmdID_End, None */
}
void
PHY_SwChnl8188E(/* Call after initialization */
PADAPTER Adapter,
u8 channel
)
{
/* PADAPTER Adapter = ADJUST_TO_ADAPTIVE_ADAPTER(pAdapter, _TRUE); */
HAL_DATA_TYPE *pHalData = GET_HAL_DATA(Adapter);
u8 tmpchannel = pHalData->current_channel;
if (pHalData->rf_chip == RF_PSEUDO_11N) {
/* pHalData->SwChnlInProgress=FALSE; */
return; /* return immediately if it is peudo-phy */
}
/* if(pHalData->SwChnlInProgress) */
/* return; */
/* if(pHalData->SetBWModeInProgress) */
/* return; */
while (pHalData->odmpriv.rf_calibrate_info.is_lck_in_progress)
rtw_msleep_os(50);
/* -------------------------------------------- */
switch (pHalData->CurrentWirelessMode) {
case WIRELESS_MODE_A:
case WIRELESS_MODE_N_5G:
/* RT_ASSERT((channel>14), ("WIRELESS_MODE_A but channel<=14")); */
break;
case WIRELESS_MODE_B:
/* RT_ASSERT((channel<=14), ("WIRELESS_MODE_B but channel>14")); */
break;
case WIRELESS_MODE_G:
case WIRELESS_MODE_N_24G:
/* RT_ASSERT((channel<=14), ("WIRELESS_MODE_G but channel>14")); */
break;
default:
/* RT_ASSERT(FALSE, ("Invalid WirelessMode(%#x)!!\n", pHalData->CurrentWirelessMode)); */
break;
}
/* -------------------------------------------- */
/* pHalData->SwChnlInProgress = TRUE; */
if (channel == 0)
channel = 1;
pHalData->current_channel = channel;
/* pHalData->SwChnlStage=0; */
/* pHalData->SwChnlStep=0; */
if (!RTW_CANNOT_RUN(Adapter)) {
#if 0
/* PlatformSetTimer(Adapter, &(pHalData->SwChnlTimer), 0); */
#else
_PHY_SwChnl8188E(Adapter, channel);
#endif
#if defined(CONFIG_USB_HCI) || defined(CONFIG_SDIO_HCI)
if (IS_VENDOR_8188E_I_CUT_SERIES(Adapter))
phy_SpurCalibration_8188E(Adapter);
#endif
} else {
/* if(IS_HARDWARE_TYPE_8192SU(Adapter)) */
/* { */
/* pHalData->SwChnlInProgress = FALSE; */
pHalData->current_channel = tmpchannel;
/* } */
}
}
void
PHY_SetSwChnlBWMode8188E(
PADAPTER Adapter,
u8 channel,
enum channel_width Bandwidth,
u8 Offset40,
u8 Offset80
)
{
HAL_DATA_TYPE *pHalData = GET_HAL_DATA(Adapter);
/* RTW_INFO("%s()===>\n",__FUNCTION__); */
PHY_SwChnl8188E(Adapter, channel);
PHY_SetBWMode8188E(Adapter, Bandwidth, Offset40);
rtw_hal_set_tx_power_level(Adapter, channel);
if (pHalData->bNeedIQK == _TRUE) {
if (pHalData->neediqk_24g == _TRUE) {
halrf_iqk_trigger(&pHalData->odmpriv, _FALSE);
pHalData->bIQKInitialized = _TRUE;
pHalData->neediqk_24g = _FALSE;
}
pHalData->bNeedIQK = _FALSE;
}
/* RTW_INFO("<==%s()\n",__FUNCTION__); */
}
void
PHY_SetRFEReg_8188E(
PADAPTER Adapter
)
{
u8 u1tmp = 0;
HAL_DATA_TYPE *pHalData = GET_HAL_DATA(Adapter);
if ((pHalData->ExternalPA_2G == 0) && (pHalData->ExternalLNA_2G == 0))
return;
switch (pHalData->rfe_type) {
/* 88EU rfe_type should always be 0 */
case 0:
default:
phy_set_bb_reg(Adapter, 0x40, BIT2|BIT3, 0x3); /*0x3 << 2*/
phy_set_bb_reg(Adapter, 0xEE8, BIT28, 0x1);
phy_set_bb_reg(Adapter, 0x87C, BIT0, 0x0);
break;
}
}